First European Workshop on

Standardized Procedure for the Inspection of Sprayers in Europe

-SPISE-

27 to 29 April 2004 - Braunschweig (Germany)
First European Workshop on
Standardized Procedure for
Inspection of Sprayers in Europe
-SPISE –

27 to 29 April 2004
Braunschweig

European Standard EN 13790
Part 1: Field crop sprayers

the basis for sprayer inspection
in Europe

Dr.-Ing Heinz Ganzelmeier
During recent years, several countries have developed systems for inspection of sprayers in use. Developments in this direction have been stimulated by public concern about risks, and the aim of reducing the use of crop protection products.

However, there are three main arguments for the inspection:

- **Test operator safety**
- Less potential risk of environmental contamination by crop protection products
- **Good control** of the pest with the minimum possible input of crop protection product.

This European Standard consists of the following Parts, under the general title Agricultural machinery — Sprayers - Inspection of sprayers in use:

- **Part 1: Field crop sprayers**
- **Part 2: Air-assisted sprayers for bush and tree crops**
This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by November 2003, and conflicting national standards shall be withdrawn at the latest by November 2003.

According to the CEN/CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Luxembourg, Malta, Netherlands, Norway, Portugal, Slovakia, Spain, Sweden, Switzerland and the United Kingdom.

The following Candidate Countries are already a member of CEN since 01 January 2004: Estonia, Lithuania, Latvia, Poland, Slovenia, Cyprus.

In order to use crop protection products in agricultural production in Europe safely, it is necessary to define the requirements and test methods for sprayers in use.
This is a relevant step after having standardized the requirements for new equipment, in respect of safety hazards (see EN 907) and potential risks of environmental contamination (see EN 12761 Parts 1 to 3).

The inspection of sprayers in use can be done on a voluntary or mandatory basis.

In both cases further official or legal specifications are necessary, e.g. on the execution management of the inspection, which organisations are authorised to carry out the inspection, time intervals between inspections etc...

As the specifications of this European Standard are based on EN 907 and EN 12761, it may be the case that sprayers in use which were produced before EN 907 and EN 12761 came into force do not fulfil all the specifications given in this European Standard.
Standardising the requirements and methods for inspection of sprayers in use, takes into consideration not only the original performance of the spraying equipment, but also its use, care and maintenance. This is the logical link between new equipment of good quality and well educated and concerned users.

This European Standard specifies the requirements and methods of their verification for the inspection of sprayers in use.

It relates mainly to the condition of the sprayer in respect of safety hazards for the test operator, the potential risk of environmental contamination and opportunities to achieve good application.

The compliance with the requirements defined in the following clauses shall be checked by
--inspection,
--function tests and
--measurements.
4.1.1
The power take-off (PTO) drive shaft guard and the guard of the power input connection (PIC) shall be fitted and in good condition:

The protective devices and any moving or rotating power transmission parts shall not be affected in their function.

Method of verification: inspection and function test.
4.1.2
A device for supporting the PTO drive shaft when not in use shall be present and in good condition. The chain or device used for restraining the PTO shaft guard shall not be acceptable for this purpose.
The guard of the PIC shall be fitted and in good condition.

Method of verification: inspection and function test.
4.2.1
The pump capacity shall be suited to the needs of the equipment.

a) The pump capacity shall be at least 90% of its original nominal flow, given by the manufacturer of the sprayer.

Method of verification: measurement according to 5.2.1.a); or
Power transmission parts
PTO drive shaft guard supporting the PTO

Pump
- **Capacity**
- Pulsations
- Pressure safety valve, if applicable
- Leaks

Agitation

Spray liquid tank
- Leaks
- Strainer
- Grating, if applicable
- Pressure compensation
- Level indicator
- Emptying
- Non return device, if applicable
- Chemical introduction container, if applicable
- Can cleaning device, if applicable

Measuring systems, controls and regulation systems
- Reliability/leakages
- Operation of controls
- Pressure gauge
- Other measuring devices

Pipes and hoses
- Leaks
- Bending/abrasion

Filtering
- Filter presence
- Cleaning, if applicable
- Filters inserts changeability

4.2.1

b) the pump shall have **sufficient flow rate capacity** in order to be able to spray at maximum working pressure as recommended by the sprayer or the nozzle manufacturer during test with thelarges nozzles mounted on the boom while maintaining a visible agitation as specified in 4.3.

Method of verification: measurement according to 5.2.1.b).
Power transmission parts
PTO drive shaft guard
supporting the PTO Pump
- Capacity

- **Pulsations**
- Pressure safety valve, if applicable
- Leaks/ages

Agitation
Spray liquid tank
- Leaks/ages
- Strainer
- Grating, if applicable
- Pressure compensation
- Level indicator
- Emptying
- Non return device, if applicable
- Chemical introduction container, if applicable
- Can cleaning device, if applicable

Measuring systems, controls and regulation systems
- Reliability/leaks/ages
- Operation of controls
- Pressure gauge
- Other measuring devices

Pipes and hoses
- Leaks/ages
- Bending/abrasion

Filtering
- Filter presence
- Cleaning, if applicable
- Filters inserts changeability

4.2.2

There shall be **no visible pulsations** caused by the pump.

Method of verification: inspection and function test.
4.2.3
When there is a pressure safety valve on the pressure side of the pump, this valve shall work reliably.

Method of verification: inspection and function test.
4.2.4
There shall be no leakages (e.g. dripping) from the pump.

Method of verification: inspection.
Power transmission parts
- PTO drive shaft guard
- Supporting the PTO
- Pump
- Capacity
- Pulsations
- Pressure safety valve, if applicable
- Leakages

Agitation
- Spray liquid tank
- Leakages
- Strainer
- Grating, if applicable
- Pressure compensation
- Level indicator
- Emptying
- Non return device, if applicable
- Chemical introduction container, if applicable
- Can cleaning device, if applicable

Measuring systems, controls and regulation systems
- Reliability/leakages
- Operation of controls
- Pressure gauge
- Other measuring devices

Pipes and hoses
- Leakages
- Bending/abrasion

Filtering
- Filter presence
- Cleaning, if applicable
- Filters inserts
- Changeability

4.3
A clearly visible recirculation shall be achieved when spraying at the nominal p.t.o speed, with the tank filled to the half of its nominal capacity.

Method of verification: inspection.
4.4.1
There shall be no leakages from the tank or from the filling hole when the cover is closed.

Method of verification: inspection.
4.4.2
There shall be a **strainer in good condition in the filling hole.**

Method of verification: inspection.
4.4.3
There shall be a **grating in the chemical induction bowl**, if provided.

Method of verification: inspection.
Power transmission parts
PTO drive shaft guard
supporting the PTO
Pump
- Capacity
- Pulsations
- Pressure safety valve, if applicable
- Leaksages
Agitation
Spray liquid tank
- Leaksages
- Strainer
- Grating, if applicable
- **Pressure compensation**
- Level indicator
- Emptying
- Non return device, if applicable
- Chemical introduction container, if applicable
- Can cleaning device, if applicable
Measuring systems, controls and regulation systems
- Reliability/leaksages
- Operation of controls
- Pressure gauge
- Other measuring devices
Pipes and hoses
- Leaksages
- Bending/abrasion
Filtering
- Filter presence
- Cleaning, if applicable
- Filters inserts changeability

4.4.4
Pressure compensation (to avoid over- or underpressure in the tank) shall be ensured.

Method of verification: inspection.
4.4.5
There shall be a [clearly readable liquid level indicator] on the tank which is visible from the driver's position and from where the tank is filled.

Method of verification: inspection.
4.4.6
It shall be possible to collect the emptied spray liquid simply, without tools, reliably and without spillage (for example using a tap).

Method of verification: function test.
Power transmission parts
PTO drive shaft guard
supporting the PTO
Pump
- Capacity
- Pulsations
- Pressure safety valve, if applicable
- Leakages
Agitation
Spray liquid tank
- Leakages
- Strainer
- Grating, if applicable
- Pressure compensation
- Level indicator
- Emptying
- Non return device, if applicable
- Chemical introduction container, if applicable
- Can cleaning device, if applicable
Measuring systems, controls and regulation systems
- Reliability/leakages
- Operation of controls
- Pressure gauge
- Other measuring devices
Pipes and hoses
- Leakages
- Bending/abrasion
Filtering
- Filter presence
- Cleaning, if applicable
- Filters inserts changeability

4.4.7
If there is a non-return device on the water filling device of the tank, this device shall work reliably.

Method of verification: inspection and function test.
Power transmission parts
PTO drive shaft guard
supporting the PTO
Pump
- Capacity
- Pulsations
- Pressure safety valve, if applicable
- Leakages
Agitation
Spray liquid tank
- Leakages
- Strainer
- Grating, if applicable
- Pressure compensation
- Level indicator
- Emptying
- Non return device, if applicable
- Chemical introduction container, if applicable
- Can cleaning device, if applicable
Measuring systems, controls and regulation systems
- Reliability/leakages
- Operation of controls
- Pressure gauge
- Other measuring devices
Pipes and hoses
- Leakages
- Bending/abrasion
Filtering
- Filter presence
- Cleaning, if applicable
- Filters inserts changeability

4.4.8
The chemical induction bowl, if provided, shall work reliably.

Method of verification: function test.
4.4.9
The cleaning device for crop protection product containers, if provided, shall work reliably.

Method of verification: function test.
Power transmission parts
- PTO drive shaft guard supporting the PTO
- Pump
 - Capacity
 - Pulsations
 - Pressure safety valve, if applicable
 - Leaks
Agitation
Spray liquid tank
- Leaks
- Strainer
- Grating, if applicable
- Pressure compensation
- Level indicator
- Emptying
- Non return device, if applicable
- Chemical introduction container, if applicable
- Can cleaning device, if applicable

Measuring systems, control and regulation systems
- Reliability/leaks
- Operation of controls
- Pressure gauge
- Other measuring devices

Pipes and hoses
- Leaks
- Bending/abrasion
Filtering
- Filter presence
- Cleaning, if applicable
- Filters inserts changeability

4.5.1
All devices for measuring, switching on and off and adjusting pressure and/or flowrate shall work reliably and there shall be no leakages.

Method of verification: inspection and function test.
4.5.2 The controls necessary for spraying shall be mounted in such a way that they can be easily reached and operated during the application and information provided for example on displays that can be read respectively. Switching off and on of all nozzles shall be possible simultaneously.

Method of verification: inspection
The scale shall be marked:
- <5 bar: 0.2 bar
- 5-20 bar: 1.0 bar
- >20 bar: 2.0 bar

4.5.3 / 4.5.4
The scale of the pressure gauge shall be clearly readable and suitable for the working pressure range used.

Method of verification: inspection.
4.5.5
For analogue pressure gauges the **minimum diameter** of the pressure gauge cases shall be **63 mm**.

Method of verification: measurement.
4.5.6

The accuracy of the pressure gauge shall be
± 0.2 bar for working pressures between 1 bar (included) and 2 bar,
± 10 % for working pressures > 2 bar.

Method of verification: according to 5.2.3.
Power transmission parts
PTO drive shaft guard supporting the PTO
Pump
- Capacity
- Pulsations
- Pressure safety valve, if applicable
- Leakages
Agitation
Spray liquid tank
- Leakages
- Strainer
- Grating, if applicable
- Pressure compensation
- Level indicator
- Emptying
- Non return device, if applicable
- Chemical introduction container, if applicable
- Can cleaning device, if applicable
Measuring systems, controls and regulation systems
- Reliability/leakages
- Operation of controls
- Pressure gauge
- Other measuring devices
Pipes and hoses
- Leakages
- Bending/abrasion
Filtering
- Filter presence
- Cleaning, if applicable
- Filters inserts changeability

4.5.7 Other measuring devices, especially flow meters (used for controlling the volume/hectare rate), shall measure within a maximum error of 5 % of the real data.

Method of verification: according to 5.2.3.
4.6.1 There shall be no leakages from pipes or hoses when tested up to the maximum obtainable pressure for the system.

Method of verification: inspection and function test.
Power transmission parts
PTO drive shaft guard supporting the PTO
Pump
- Capacity
- Pulsations
- Pressure safety valve, if applicable
- Leakages
Agitation
Spray liquid tank
- Leakages
- Strainer
- Grating, if applicable
- Pressure compensation
- Level indicator
- Emptying
- Non return device, if applicable
- Chemical introduction container, if applicable
- Can cleaning device, if applicable
Measuring systems, controls and regulation systems
- Reliability/leakages
- Operation of controls
- Pressure gauge
- Other measuring devices
Pipes and hoses
- Leakages
- Bending/abrasion
Filtering
- Filter presence
- Cleaning, if applicable
- Filters inserts changeability

4.6.2
Hoses shall be positioned in such a way that there are no sharp bends and no abrasion which makes the woven fabric visible.

Method of verification: inspection.
4.7.1
There shall be one filter on the pressure side of the pump and in case of positive displacement pumps also one filter on the suction side.

The filter(s) shall be in good condition and the mesh size shall correspond to the nozzles fitted according to the instructions of nozzle manufacturers.

Method of verification: inspection and function test.

Nozzle filters are not considered as pressure side filters
Power transmission parts
PTO drive shaft guard
supporting the PTO
Pump
- Capacity
- Pulsations
- Pressure safety valve, if applicable
- Leaks
Agitation
Spray liquid tank
- Leaks
- Strainer
- Grating, if applicable
- Pressure compensation
- Level indicator
- Emptying
- Non return device, if applicable
- Chemical introduction container, if applicable
- Can cleaning device, if applicable
Measuring systems, controls and regulations systems
- Reliability/leakages
- Operation of controls
- Pressure gauge
- Other measuring devices
Pipes and hoses
- Leaks
- Bending/abrasion
Filtering
- Filter presence
- Cleaning, if applicable
- Filters inserts changeability

4.7.2
If an shut off device is provided, it shall be possible, with the tank filled to its nominal volume, to clean filters without any spray liquid leaking out except for that which may be present in the filter casing and the suction lines.

Method of verification: inspection.
4.7.3 Filter inserts shall be changeable.

Method of verification: inspection.
Spray boom
- Stable/Straight
- Automatic resetting
- Safely lockable
- Nozzle spacing/orientation
- Nozzle height
- Sprayer contamination by spray
- Prevention of nozzle damage
- Boom sections control
- Height adjustment
- Damping, slope compensation
- Pressure variations
Nozzles
- Identical
- Dripping
Distribution
- Measurement on patternator
- Flow rate measurement

4.8.1
The boom shall be stable in all directions, i.e. not loose in any joints and not be bent. The right and the left parts of the boom shall be of the same length.

Method of verification: inspection.
Spray boom
- Stable/Straight
- **Automatic resetting**
- Safely lockable
- Nozzle spacing/orientation
- Nozzle height
- Sprayer contamination by spray
- Prevention of nozzle damage
- Boom sections control
- Height adjustment
- Damping, slope compensation
- Pressure variations

Nozzles
- Identical
- Dripping

Distribution
- Measurement on patternator
- Flow rate measurement

4.8.2
When provided, the automatic resetting of booms shall operate if fitted with the device, to move backwards and forwards, in case of contact with obstacles.

Method of verification: inspection and function test.
Spray boom
- Stable/Straight
- Automatic resetting
 - **Safely lockable**
- Nozzle spacing/orientation
- Nozzle height
- Sprayer contamination by spray
- Prevention of nozzle damage
- Boom sections control
- Height adjustment
- Damping, slope compensation
- Pressure variations

Nozzles
- Identical
- Dripping

Distribution
- Measurement on patternator
- Flow rate measurement

4.8.3

The **boom shall be securely lockable** in the transport position.

Method of verification: inspection and function test.
4.8.4

The nozzle spacing and their orientation shall be uniform along the boom, except for special equipment such as border spraying. By design, it shall not be possible to modify unintentionally the position of the nozzles in working conditions, for example by folding/unfolding the boom.

Method of verification: inspection and measurement.
4.8.5
When measured stationary on a level surface, the distance between the lower edges of the nozzles and the surface shall not vary more than 10 cm or 1% of the half working width.

Method of verification: inspection and measurement.
Spray boom
- Stable/Straight
- Automatic resetting
- Safely lockable
- Nozzle spacing/orientation
- Nozzle height

Sprayer contamination by spray
- Prevention of nozzle damage
- Boom sections control
- Height adjustment
- Damping, slope compensation
- Pressure variations

Nozzles
- Identical
- Dripping

Distribution
- Measurement on patternator
- Flow rate measurement

4.8.6
Regardless of the distance of the boom above the ground, no liquid shall be sprayed on to the sprayer itself. This does not apply if needed by function and if dripping is minimised.

Method of verification: inspection.
Spray boom
- Stable/Straight
- Automatic resetting
- Safely lockable
- Nozzle spacing/orientation
- Nozzle height
- Sprayer contamination by spray
- **Prevention of nozzle damage**
- Boom sections control
- Height adjustment
- Damping, slope compensation
- Pressure variations
- Nozzles
 - Identical
 - Dripping
- Distribution
- Measurement on patternator
- Flow rate measurement

4.8.7
A device shall be fitted to prevent damage to the nozzles if the boom hits the ground, if the working width of the boom is 10 m.

Method of verification: inspection.
Spray boom
- Stable/Straight
- Automatic resetting
- Safely lockable
- Nozzle spacing/orientation
- Nozzle height
- Sprayer contamination by spray
- Prevention of nozzle damage

- **Boom sections control**
 - Height adjustment
 - Damping, slope compensation
 - Pressure variations

Nozzles
- Identical
- Dripping
- Distribution
- Measurement on patternator
- Flow rate measurement

4.8.8
It shall be possible to switch on and off individual boom sections.

Method of verification: inspection and function test.
Spray boom - Stable/Straight - Automatic resetting - Safely lockable - Nozzle spacing/orientation - Nozzle height - Sprayer contamination by spray - Prevention of nozzle damage - Boom sections control - **Height adjustment** - Damping, slope compensation - Pressure variations - Nozzles - Identical - Dripping - Distribution - Measurement on patternator - Flow rate measurement

4.8.9 **Height adjustment devices shall work reliably.**

Method of verification: function test.
4.8.10

Devices for damping unintended boom movements and slope compensation systems shall work reliably.

Method of verification: function test.
4.8.11
When measured at the inlet of the boom sections, the pressure shall not vary more than 10 %, when the sections are closed one by one.

Method of verification: according to 5.2.7.
4.9.1

All nozzles shall be identical (type, size, material and origin) all along the boom, except where they are intended for a special function for example the end nozzles for border spraying. Other components (nozzle filters, anti drip devices) shall be equivalent all along the boom.

Method of verification: inspection.
Spray boom
- Stable/Straight
- Automatic resetting
- Safely lockable
- Nozzle spacing/orientation
- Nozzle height
- Sprayer contamination by spray
- Prevention of nozzle damage
- Boom sections control
- Height adjustment
- Damping, slope compensation
- Pressure variations
Nozzles
- Identical
- **Dripping**
Distribution
- Measurement on patternator
- Flow rate measurement

4.9.2
After being switched off, the nozzles shall not drip. 5 s after the spray jet has collapsed there shall be no dripping.

Method of verification: inspection.
Spray boom
- Stable/Straight
- Automatic resetting
- Safely lockable
- Nozzle spacing/ orientation
- Nozzle height
- Sprayer contamination by spray
- Prevention of nozzle damage
- Boom sections control
- Height adjustment
- Damping, slope compensation
- Pressure variations
- Nozzles
- Identical
- Dripping

Distribution
- Measurement on patternator
- Flow rate measurement

4.10
For the transverse distribution, the requirements and test methods of 4.10.1 or 4.10.2 shall apply.

NOTE 1: If nozzles are used on a boom to form a uniform spray, 4.10.1 or 4.10.2 applies; in other cases, 4.10.2 applies.

NOTE 2: A compared evaluation of the two methods given in 4.10.1 and 4.10.2 will be carried out during the revision of this standard to check whether preference may be given to one of these methods.
4.10.1
a) The transverse distribution, within the total overlapped range, shall be uniform. The transverse distribution is evaluated on the basis of the coefficient of variation which shall not exceed 10 %;

b) the amount of liquid collected by each patternator groove within the overlapped range shall not deviate more than ± 20 % of the total mean value.

Method of verification: measurement according to 5.2.4.
4.10.2.1 The deviation of the flow rate of each nozzle of the same type shall not exceed ± 10 % of the nominal flow rate indicated by the manufacturer.

Method of verification: measurement according to 5.2.5.
4.10.2.2

The pressure drop between the measuring point for pressure on the sprayer and the end of each boom section width shall not exceed 10% of the pressure shown on the pressure gauge.

Method of verification: measurement according to 5.2.6.
Before the inspection takes place, the sprayer shall be carefully cleaned. Certain attention shall be paid to rinsing and internal cleaning of the sprayer including filters and filters inserts, and external cleaning of those parts of the sprayer that are most exposed to the crop protection product when spraying. Visible and other known faults should preferably be remedied before the inspection. A preparatory "rough inspection" should be done at the site of the ordinary inspection, in order to avoid wasting time making measurements on sprayers with very obvious serious faults. The owner/operator of the sprayer should preferably be present at the inspection.
5.2 Test facilities and methods
5.2.1 Pump capacity measurement
5.2.2 Verification of the sprayers pressure gauges
5.2.3 Flow meters for controlling the volume / hectare rate
5.2.4 Measurement of the uniformity of the transverse volume
5.2.5 Measurement of the flow rate
5.2.6 Measurement of pressure drop
5.2.7 Measurement of pressure variation when the sections are closed
5.2.8 Other test facilities
A test report shall be given to the user directly following the inspection at the inspection site. This report shall mention any malfunctions of the sprayer and inform the user of the repairs required to be made to his equipment. The test report shall also include the results of the measurements. An example of a test report is given in annex B.
European Standard EN 13790

Inspection of sprayers in use - Part 1

<table>
<thead>
<tr>
<th>Subject</th>
<th>Description</th>
<th>Requirement a</th>
<th>Defect</th>
<th>General remarks on the state of the sprayer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Power transmission</td>
<td>Guards</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Pump</td>
<td>Piston</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Agitation</td>
<td>mechanic, hydraulic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Spray liquid tank</td>
<td>Volume</td>
<td>Leakages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Measuring systems, controls and regulation systems</td>
<td>Function</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Pipes and hoses</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Filtering</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Spray boom</td>
<td>Working width</td>
<td>Stability/straightness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Nozzles</td>
<td>Number of nozzles</td>
<td>Identical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Transverse distribution</td>
<td>Actual C_V, %</td>
<td>Coefficient of variation ($\leq 10%$)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Defect</th>
<th>Minor defects</th>
<th>Critical</th>
<th>Repaired</th>
</tr>
</thead>
<tbody>
<tr>
<td>Po</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*a if applicable
8 (proposal)
The inspection service fills the sticker in with address...and sticks it on the sprayer after the inspection has shown that the sprayer functions without fault.
The sticker may also handed out if the sprayer has minor defects which the owner undertakes to remove immediately.
Concluding remarks

EN 13790 continues to be characterised by the fact that

- it brings together in one standard the different procedures, findings and technical requirements which have existed in the Member States up to now
- it is established on the basis of test methods and requirements which have proved reliable in the Member States in the past
- it achieves a high technical level whilst not consuming unnecessary time or money
- the Member States are obliged to apply this standard and to withdraw respective national standards
- it represents a basis for the harmonisation of sprayer inspections and the future mutual acceptance of inspections between the Member States
- it determines technical requirements but does not anticipate regulatory decisions made by the Member States and the EU.